The DARPA Advanced Logistics Project

Todd Carrico Steve Milligan Leo Pigaty V.S.Subrahmanian
DARPA BBN Technologies | Los Alamos Tech. University of

Assoc. Maryland
tcarrico@darpa.mil

Abstract

Logistics deals with the problem of getting the right “Stuff” (people, materiel,
equipment, and supplies) to the right “place”at the right “time”, During the last few
years, it has been widely recognized that the next generation of logistics
information systems must be powerful enough to manipulate massive, distributed,
logistics databases, and enable logisticians to perform a variety of functions such
as tracking the status of supplies and materials, planning based on the current
status, efficiently tracking status changes as they occur, and re-planning as
needed in order to accomplish the mission(s) at hand. In 1996, the Defense
Advanced Research Projects Agency (DARPA) started an $80 million research
effort called the Advanced Logistics Project (ALP) aimed at developing the next
generation of logistics systems. This paper will describe the goals of ALP, the
multiagent logistics architecture proposed by ALP, how this architecture supports
the achievement of ALP% goals, and how it scales up to applications involving
tens of thousands of cooperating software components built by multiple, disparate
companies and government entities.

Keywords: Atrtificial intelligence, multiagent systems, planning and monitoring,
logistics

1. Introduction

Logistics refers to the task of getting the “fight stuff”’to the “fight placeat the ‘fight time.”” Almost
every major corporation, large organization, and complex government entity needs logistics
support on a continuous, day-in, day-out basis. In addition to the planning process itself, modern
logistics systems have three primary challenges:

Rapid Supply: Every major company or government organization must be able to rapidly
provide the assets to keep the business of that organization running smoothly. The challenge
is to build a system that perfectly balances high fidelity estimation with adaptive demand
routing to create a real-time hybrid supply chain which combines the "push" of supplies in

anticipation of projected demand against the "pull" of supplies based on actual demand to such
precision that it virtually eliminates on-hand stocks.

End-to-End Movement Control: Resources are only effective if you can get them to the place
they are needed when they are needed — which makes effective and efficient transportation a
critical component of both customer satisfaction and global power projection. The challenge is
to build a system that supports both local and global optimization over multiple transportation
modes. This system can integrate the transportation pipeline so effectively it virtually
eliminates the need to stage cargo at points where it will transfer from one mode to another..
Further, this system can manage multiple concurrent large-scale operational demands, each
being planned against different sets of priorities and constraints.

Execution Monitoring: As the best laid plans frequently go wrong, to operate effectively in the
dynamics of the real world means being able to observe, react and adapt to the real world.

The challenge is to create an information system that can understand the implications of
changes in the real world, understand the implications and the effects on current operations
and future plans, and quickly replan in such a manner as to not invalidate the progress
achieved by the actions already taken but to compensate for the changes observed through
subsequent actions. Ultimately, the system needs to learn from the observations and effects to
change the fundamental rules under which it operates and to adapt the character of the plans it
builds.

Today, logistics is a manually intensive process that, for DOD, involves hundreds of stovepipe
logistics information systems. To truly get control of the global logistics process requires
harnessing the power of emerging information and automation technology.

The overall goal of the DARPA Advanced Logistics Project (ALP) is to ensure
the next generation of logistics systems provides an easily expandable, loosely
coupled (physically), yet tightly integrated (logically) business process that
meets the challenges of high fidelity logistics planning, rapid supply, end-to-end
movement control and execution monitoring, autonomously and automatically
to a level of detail and fidelity never before achieved. In particular, ALP will
develop and demonstrate the tools and concepts which could revolutionize the
logistics systems of the US Department of Defense and industry in the 21
Century.

The ability to rapidly and effectively deploy military forces to hotspots around the world has become
a critical capability for US and NATO forces. Force deployment involves the timely movement of
troops, equipment, and materiel to the region of conflict. Today, it often takes 45-60 days to create
a logistics plan (Log-plan) for a given operational requirement. ALP% goal is to develop the
theory, algorithms, and implementations needed to create a high fidelity Log-plan in under an hour.
To address this challenge, ALP must:

Provide high degrees of visibility into the logistics pipeline and information necessary to
trace resources moving through the pipeline back to the assorted logistics processes
which touch that resource. Meeting this goal will ensure accuracy and thereby build
confidence in the system.

Provide high fidelity, real-time status information on demand, but not require high
communications bandwidth for the synchronization and transfer of information for which

VI.

VII.

there is no demand. Meeting this goal will ensure fine-grained data management for
operation in bandwidth constrained environments.

Be capable of anticipatory logistics for emerging changes in the operating environment and
responsive, reactive logistics for unexpected changes in the environment and operational
plans. Further, the system must be adaptive in its behavior, sensitive to changing policies
and priorities, and continuously evolutionary in capabilities. Meeting this goal will ensure
the system does not become obsolete as we continue to grow and evolve our business
processes.

Be sensitive to the pressures, priorities, and constraints of multiple concurrent operations
and a spectrum of concurrent processes. Meeting this goal will ensure the system can
perform the appropriate tradeoffs to achieve both the best available local and global
solution.

Be capable of performing multiple, varied analysis to support "what-if* considerations and
contingency planning in an effective and scalable way while ensuring the system does not
lose sight of the requirements of continuing operations. Meeting this goal will ensure the
human element of creativity and design have the underlying analytic support to ensure
sound decision making even under extreme situations.

Support dynamic replanning in a scalable way, given the fact that changes in the state of
the supply chain may effect hundreds, or even thousands, of plans and changes occurring
hundreds of times a minute. Meeting this goal will ensure the system is designed against
super-linear complexity growth and chaotic instability --- both necessary for very-large
scale distributed agent societies.

Ensure capability and visibility from all echelons, from all classes of devices, operating
effectively in a globally distributed, intermittent communications environment. Meeting this
goal will ensure even those users with a PDA, web-browser and a cell phone can be tied
into the global logistics system of the future.

In addition, this futuristic logistics system must have the following features:

2.

It must be heterogeneous, given the US Department of Defense depends on thousands of
organizations and contractors, many of whom have their own proprietary data and software
systems.

It must support cooperation between software modules, as programs must be able to
interoperate with other programs and semantically comprehend the messages flowing between
these cooperating modules.

It must be massively scalable as each corporate entity may use hundreds of data sources and
code bases. Hundreds of thousands, and perhaps even millions of such modules need to
cooperate with one another.

The ALP Cluster Architecture

Since the DOD is made up of hundreds of organizations, each with its own specific planning and
logistics needs, and as these organizations in turn need to interact with contractors and vendors,
each of whom often have their own logistics systems, the ALP architecture had to be distributed,
flexible, adaptive, autonomous and cooperative. The ALP architecture uses an abstraction of a
logistics system’ functional behavior. The idea was that if all interacting logistics systems are

viewed as instances of this abstraction, then we could take advantage of the known structure and
capabilities of the abstraction to facilitate interoperability and cooperation among such instances.
The specific design of the system was built on existing concepts in agent architectures. However,
we added another layer, a cognitive planning abstraction, to better mirror the human processes the
system would be representing.

The selected abstraction was called a cluster, which is the general framework used by each agent
in the system. Once populated with specific domain behaviors and knowledge (through the
insertion of "plug-ins"), the cluster is considered instantiated as an agent. Each cluster has the
architecture shown in Figure 1 below.

. LDM Manager

LogPlan

 Expander Assessar

Allocatar

Real Warld Sensors

4 Subordinate ! Supporing

- = Agent and Agent Communities
Users Thraough External [rata
Uszer Interfaces Sources

Figure 1: ALP Cluster Architecture

In the ALP architecture, every cluster represents one or more logistics business processes. The
granularity and fidelity of the processes depends on a number of factors, but through encapsulation
by the agent interfaces many different fidelity business processes can cooperate in the same
system. For example, the Military Traffic Management Command (MTMC) may have a cluster
agent that creates overland transportation plans. The Military Sealift Command (MSC) may have a
cluster agent that creates and manages ships and develops ship schedules. While each agent
performs its own internal planning, it also coordinates on the details where the plans intersect. For
example, the coordination of truck and rail schedules from MTMC with the port arrival and ship
loading schedules from MSC. In a well constructed plan, these schedules will be aligned so no
time is lost aggregating or staging cargo when items being shipped are transferred from one mode
of transportation (ground) to another (sea). The ALP architecture addresses both the intra-agent

planning and execution processes as well as inter-agent process coordination. This is supported
by the cognitive model layer, composed of the Task Expander, Task Allocator and Task Assessor.
Inter-agent coordination is supported through a well-defined task negotiation processes and will be
addressed in a later section.

The Task Expander takes high level tasks and decomposes them into the specified and implied
tasks that must be accomplished to achieve the higher level task. Since there are many
reasonable decompositions, the Expander uses information on the world state, domain rules as
well as task preferences and constraints, to find the most effective decomposition for that task.
The logical, temporal and spatial arrangement of the derived tasks form a task workflow.

The Task Allocator takes the specified and implied tasks derived from the Expander
decomposition, and allocates them to the available resources. These resources may be internal
processes and services, subordinate and supporting agent services, or requests for user actions.
The Allocator attempts to find the best allocation of resources for the components of the workflow
available, given the world state and propagated task constraints and preferences.

Once the expansion and allocations are completed, the Task Assessor tracks the execution status
of all tasks to ensure they are meeting their task objectives. It also continually assesses whether
the workflow of tasks is meeting the original task objectives from which the workflow was derived.
When the execution of a task deviates beyond a certain threshold, the Assessor component
generates an exception that causes one or more actions to be triggered and appropriate
components of the workflow to be replanned.

2.1. The Cognitive Layer

The cognitive layer, composed of the Task Expander, Task Allocator and Task Assessor, is
modeled after the way humans plan. When humans plan we use "a divide and conquer approach"
and decompose activities into more doable pieces. Each piece is then processed to some level
and we assess the expectation that success of the individual pieces will yield success in the
original higher-level task. Once convinced we have a reasonable plan, we begin execution.
During execution, we continually assess each piece to see if it is achieving its individual objective
and ultimately, the higher level objective.

Let's trace an example as implemented in this cognitive model through the ALP architecture. The
process starts with the arrival of a task of the form of:

[Action: TRANSPORT
What: 1BN, 31 Infantry Division
From: Ft. Stewart, USA to ReceptionPointCharlie, Saudi Arabia
By: C+30
Pref: Minimize Cost |

Generally, the most economical manner to move forces is by sea. If we assume itis currently at
or before C+0, we have enough time in the schedule to use that mode. Thus the Task Expander
will decompose the base "TRANSPORT" task into three sub-tasks.

TRANSPORT_GROUND From: Ft. Stewart, USA to UnNamed Port, USA

TRANSPORT_SEA From: UnNamed Port, USA to UnNamed Port, Saudi Arabia
TRANSPORT_GROUND From: UnNamed Port, Saudi Arabia to
ReceptionPointCharlie, Saudi Arabia

These tasks would be assembled as a workflow with the all the appropriate information from the
parent task as well as additional logical, temporal and spatial constraints required to govern the
transition between tasks. The workflow would then be posted to the Log-plan.

In our example, there are both timing and spatial constraint transitions between the various tasks.
Thus, the finish location of forces (S) at the finish time (T) upon completion of the
Transport_Ground task must be within an allowable tistance *from the start location (S) and start
time (T) of the Transport_Sea task. Part of the workflow constraint identifies the specific allowable
time and space parameters for this task.

Next the Allocator would be alerted that there are unallocated tasks in the Log-plan. The Allocator
would then attempt to match up each task Verb and necessary phrases with either an internal
execution capability or a registered capability of a subordinate or supporting agent. In the example
above, TRANSPORT_GROUND tasks for From *prepositions, which specify US locations are
dispatched to the Conus Ground Agent. All TRANSPORT_SEA tasks are sent to Global Sea and
TRANSPORT_GROUND tasks for From’prepositions outside the US are sent to the appropriate
Theater Ground agent — in this case the Theater Ground agent in the CENTCOM community.

Thus the Allocator would send each of these tasks to other cluster agents for processing. Part of
that processing would be the selection of ships and ports by Global Sea, which would then drive
the planning of the other two ground mode agents. Though not shown above, the sub-tasks
generally have all the relevant information from parent task as well any additional constraints the
parent agent elects to impose.

As each of the subordinate agents respond to their individual task requests, the parent Assessor
will determine how each proposed solution satisfies the plan. The parent will also coordinate
additional information regarding the plan between "its children” through the refinement of task
parameters such as defining the Conus port selection.

The resulting workflow, shown in Figure 2, shows the linkage between the sub-tasks in the
workflow and received tasks in the child agents.

Flobal Mode
e filanager

_____ —

Transport_&round l——(T-Sj # Transport_Sea | _(T-S)_I'-I Tranzport_Sround
T
I

Derive urk_ﬂ_l;uw __I N

T
)
¥
X
1]
]
L]
1
L]
L]
1

1
]
(]
1
]
]
]
1
1
1
»

Transport_Ground |

Transport_Ground |

: Tranzport_Sea

Theater Ground

Conus Ground —_—
lobal Sea

Figure 2: Example Task Decomposition

The Assessor has an additional role during execution --- that of ensuring everything meets the
requirements of the plan and that the plan accomplishes the objective. The first case is concerned
with environmental effects of execution --- like whether or not the ship was late due to bad weather.
If the ship is late, it will miss its start date and could adversely effect the results of the plan. In the
second case, the Assessor is looking for cases where the individual subtasks are successful, but
they are failing in the aggregate affect. The Assessor component continually monitors all plans
within the cluster, and attempts to identify deviations between the actual status of affairs, and the
planned state of affairs. Once a deviation has been identified, the Assessor determines what to do
about the deviation. In some cases, the deviation might be considered insignificant. In other
cases, the deviation may trigger a rapid, dynamic replanning step. In yet other cases, the deviation
might trigger replanning, accompanied by dynamic notifications being sent to affected parties
notifying them that their shipment will be delayed.

2.2. Cluster Interaction

The ALP architecture was designed in such a way that hundreds of thousands of software agents
could interoperate with one another. Each agent is a special kind of software agent [GK94],
instantiated from the cluster architecture shown in Figure 1. To date, few reports exist on the
deployment of massive multiagent applications. ALP% effort currently involves 270 agents,
performing over 2500 business processes, in a coordinated, cooperative society of agents.

Cluster agents interoperate with each other using a task grammar-based message protocol. The
task is the fundamental structure of the "request portion" of the agent negotiation dialog. The

structure of the task is a sentence in the language of discourse for ALP agents. The operational
parameters of a task are contained as essential immutable contents of the task itself. In ALP, a

task consists of the following data:

- Verb : A mnemonic verb name indicating the type of service requested (e.g.
TRANSPORT, SUPPLY, MANAGE, SUPPORT)

- PrepositionalPhrases : A set of prepositional phrases, associating the mnemonic
preposition (e.g. FROM, TO, WITH, FOR, USING, CONTAINING) with a particular object
from the sending clusters PLAN (e.g. FROM <Source Location>, TO <Destination
Location>, USING <Particular Policy Guidelines>)

In addition to these strict expressions of requirements, a tasking organization can specify a series
of preferences. A preference consists of the following data:

Aspect : A dimension of measurement about which a preference is being expressed.
ALP contains a predefined set of these, including START_TIME, END_TIME, COST,
QUANTITY, READINESS, and CUSTOMER_SATISFACTION.

ScoringFunction: A mapping from the aspect measurement space into a
dimensionless score space. This function allows for specification of best and worst
points in the space of solutions in a given aspect dimension, preferred values, and, by

convention, unacceptable values.

Weight: A scalar allowing for inter-preference comparison and aggregating scores

from individual preferences

Agent Distributed

Tasking Agent Interface Taskable Agent

Time

Send Taskwy Prep and Preferences
g

" Respond Giving Supportable Solutions

FeTazovw Relaxed Constraints

B Respond Giving Supportable Solutions

Commit to Specific Solution

Confirm Commitment

L

Y

Figure 3: Use Case Diagram of Multi-Agent Task
Negotiation

The communication between any two
clusters takes the form of a multi-step
negotiation between honest, cooperative
parties. The processes starts with the
transmission of the Task and its
corresponding Prepositions and Preferences
from the Tasking to the Taskable agent. The
Taskable agent will either find the specific
solution requested, or work through relaxing
the task requirements in an attempt to find an
acceptable solution. Relaxation begins with
the preferences of the task, lowest priority
preference first. Should total relaxation of
the preferences fail to yield a solution, then
the constraints will start to be relaxed. The
Taskable agent reports back to the Tasking
agent identifying the space of solutions it can
support. The Tasking agent will either
commit to a point in that solution space or
reformulate the Task based on the penalty
function information returned from the

Taskable agent. The penalty function provides penalty cost values against each of the constraints

and preferences to convey which aspects of the task are proving to be untenable. With this
information, the Tasking agent can participate in the refinement processes without needing access
to the Taskable agent's internal state information. This interchange continues until the two agents
cannot refine the task — no solution is possible — or a solution is found and committed to by both
parties.

2.3. Data Management

As discussed previously, the Log-plan is the information foundation of the ALP architecture. The
Log-plan is constructed from a prototype-based Logical Data Model (LDM) and fed updated
information continuously by a variety of LDM Plug-ins that interfaces with sensors, databases and
users in the real world (as shown in Figure 1). This section will discuss the ALP approach to
information management and provide a brief overview of the prototype model approach.

Solving the complex queries from a wide range of sources requires the use of a mediator ([WI193]
Dogac et.al. [DDO98]) that interoperates between multiple data sources. The mediation tool must
be able to take a user query as input, and convert it into a set of sub-queries. Each of these sub-
queries must have a structure that can access the data sources involved. To solve this problem,
the ALP architecture has the LDM Manager act as a mediator over the set of information sources
that are defined in the available plug-in set.. Each plug-in will represent an interface to one or
more information sources. Each plug-in registers the type and context of queries it can perform.
As other components, like the Task Expander, access elements of the Log-plan, these accesses
form a special class of query. If the information is present and current, the values in the Log-plan
are returned. If they are missing or expired, the LDM Manager is triggered to obtain or refresh the
data. Many of the plug-ins are simply SQL or JDBC interfaces into databases, with some
additional information to map them to or from their native structures to the Log-plan objects.

The second critical component to effective data management is the LDM, which in effect, forms the
class model for the Log-plan. The current ALP implementation includes 270 interacting agents
executing over 2500 business processes --- one of the biggest multiagent applications built to date.
The Log-plan for this society of agents is enormous — logically representing over 4million distinct
object-types for supplies and equipment alone, and well over 6 million distinct object-types
altogether. But the underlying pseudo-class model, defined by the LDM, has less than 500 classes
including all the unique role-based behavior components. To achieve this level of flexibility and
efficiency, the ALP architecture has used a specialization of the prototype (delegation) design
pattern in the construction of the underlying model.

The approach taken to represent this huge set of types includes a mix of hierarchical
decomposition (i.e. inheritance) and prototyping methods. In prototyping (Lieberman [L86] ‘a
prototype represents the default behavior for a concept, and new objects can re-use part of the
knowledge stored in the prototype by saying how the new object differs from the prototype™[L86).
Prototypes are used in the LDM to store small variations between types. For example, prototypes
are used in ALP to store the fact that both C5% and C130% are fixed-wing aircraft, but they are
slightly different in some respects.

Physical

Asset
| |
Platform Engine
5 8
AirPlatform AR a_tform
Engine
RW Fw ~N RW Fw
AirPlatform AirPlatform 100s Engine Engine
~] PW GE
c5 C-130 N
1,000,000s J255 G71B
Prototype| |—|:
Instance ’*N
1007s @l oy | BULZEE
s o
generalization _—
n _ﬁnstanceof

referencew/ cadinality

Figure 4: ALP Prototype-based L ogical Data M odel

The ALP LDM embodies a mix of prototyping and inheritance. Figure 3 above shows the
representation of types related to fixed-wing aircraft, using a mix of prototypes and inheritance. In
this figure, we notice that C5 and the C130 are both prototypes of the “FW AirPlatform”class. At
the abstract ‘FWAircraft”class level, we have only hundreds of object classes yet can represent
millions of object prototypes. Similarly at the next level of this hierarchy, instead of having millions
of unique objects, we have millions of distinct instances each of which draws its behavior from its
prototypical instance. Thus class instances are constructed from a small number of base classes
and a combination of capability and role decorations, packaged as expandable prototypes, which
can be specialized at run time as needed. This simple but powerful approach not only allows a
much reduced object model but also allows the dynamic adaptation of capabilities at run time.
Thus, as a truck moves from land onto a ship, its role and corresponding behaviors change from a
conveyance to cargo.

3. Comparing the ALP Architecture

Having presented the basic design approach and characteristics of the ALP architecture, it is
worthwhile to compare and contrast this design to other architectural approaches. Though this is a
brief comparison, it is quickly apparent that the ALP architecture attempts to pull together many of
the best features and concepts of some of the most popular and effective architectures, while
adding additional features that make it a truly unique architectural design. The resulting synergy of
design has provided a powerful agent architecture which, to date, has been highly scalable and
extremely flexible. This section identifies the similarities and differences between the ALP

10

architecture and conventional planning architectures, reactive architectures like Brook’
subsumption architecture [BR86], component-based architectures, and finally the emerging
concepts in BDI architecture.

3.1 Planning Architectures

The cognitive layer discussed earlier in this paper is based on concepts of hierarchical planning
that have been used in Al planning since the early STRIPS [FN71] work in the 1970%. The major
differences are that the planning domains are encapsulated within a plug-in and that a plug-in
plans over just the task space for which it is registered --- much like a distributed planning system.
Further, the planning phase, performed in the Expander, is segregated from the resource allocation
phase, performed by the Allocator. This forms a logical breadth-first planning approach with
delayed resource commitment. Further, both the task decomposition and resource allocation is
subject to further refinement based on commitments in other parts of the plan, similar to the
iterative refinement planning approach. The workflow structure has many structural similarities to a
partial order, analysis based correction infrastructure similar to that of NONLIN [TA77].

One of the real powers in ALP is the planning infrastructure in the architecture that serves primarily
as a router and controller, allowing the planning of individual plug-ins to employ any style of
planning or scheduling that proves most effective for that problem. In the current implementation,
we have a variety of simple STRIPS-like planners, expert system planners, case-based planners,
genetic algorithm schedulers, and numerous others. In some cases, the plug-in is most simplified
using a particular planning approach. In other cases, the problem domain makes a particular
approach significantly more efficient. By providing a hierarchical planning infrastructure but having
total flexibility on the planning at the branch and leaf nodes, we can build an effective
heterogeneous planning system.

3.2 Subsumption Architectures

Since we are trying to build a system that will support execution, there are a number experiences
that we have drawn upon from the robotics community on how to do execution effectively. Some of
the most effective execution architectures are those based on the subsumption approach proposed
by Brooks [BR86]. In this approach, multiple concurrent plans are executed, usually using some
variant of a state machine, arranged by priority. Higher priority plans intercede under appropriate
conditions to short circuit the execution and invoke an immediate response, as in the case of a
potential collision situation. Lower priority plans are the ones focused on the mission objectives of
the robot - like finding a soda can. The power in this approach is the ability to react during
execution without having to do any mapping of the situation into complex representations or
performing any advanced reasoning. These layers operate as independent services addressing a
particular business process.

The Assessor component of the architecture, though not originally designed with the subsumption
concept in mind, turns out be a very effective subsumption implementation. The Assessors look for
patterns in the information of the Log-plan and the information flowing into the agent from external
sources. Each Assessor acts like its own state machine addressing particular forms of failure.
Based on the type of failure mode and priority of the last, the effective priority of an assessed
failure forms a layered reactive response system. Since some high priority failure modes have
immediate actions associated with them, the result is a reactive system for critical failures and

11

controlled replanning cycle for non-critical failures. The logic for the determination of critical and
non-critical, as well as the patterns for assessment, can be state dependent and adaptive.

Unlike a strict subsumption approach, some of the Assessor plug-ins utilize the logistics plan,
which is in effect a model of the shared world-state as reconstructed by the agent society. Though
not all Assessors use the Log-plan, it has proven timely and accurate for all but the most time-
sensitive failure information. Like the subsumption approach, the plug-in does not maintain any
state outside that captured in the information of the Log-plan. This, in effect, supports the
classification of the ALP architecture as a hybrid deliberate-reactive system. As we move more
into the real-time execution domain, it is useful to characterize the requirements of the assessment
function as either deliberate or reactive, and construct the Assessor accordingly.

3.3 Component Architectures

The ALP architecture has strongly embraced the component-based design, an approach that has
been getting so much attention, recently. The design of both the internal architecture service
components and the plug-in interfaces is very similar to the current Java Beans [VO98][DS99]
approach to behavior encapsulation. While ALP has a much stronger semantics translation
component, the idea of communicating services, registering, and brokering is very similar to the
Jini [AO99] services approach.

The concept of the plug-in is to allow a standard mechanism, constructed as an API, to connect
specific domain behaviors. These specific behaviors could be in the form of an algorithm, an
application, or an entire system. From the rest of the system, there is no differentiation between
the magnitude of the code at the other side of the plug-in. Further, the design of the plug in
interface code provides an easy mechanism to evolve a heterogeneous system over time without
disrupting operations, an extension of the Java class loader concept.

3.4 BDI Architectures

Another popular architecture for agent development is the Belief-Decision-Intent architectures
[KG91][RG92|[WE99]. These architectures pursue practical machine reasoning by explicit
differentiation of the concepts of beliefs, decisions and intent in the planning and deliberation
process. There are a number of similarities between the ALP approach and BDI architectures and
a few key differences.

The BDI architecture is careful to make a distinction between what goals are being pursued (intent)
and how these goals are going to be pursued (decision). There is an understanding that executing
the decisions will not necessarily allow you to achieve the intent. The ALP architecture has a
similar separation in that the root task comes into the agent, or is generated by the agent, in the
form of a task objective, similar to an intent. From that the Expanders will generate a workflow
which will define the 'how', or decision plan. Some of those same tasks will be passed to other
agents which then interpret them as their objectives. In a slightly different manner, the Expander is
defining the 'what' in the ALP approach and the Allocator plug-in is responsible for determining the
'how' by virtue of the assets allocated, schedules generated, or subordinates assigned. Though in
this instance, the 'how' component is broken into two pieces, the specification of the activity by the
Expander and the association of that activity with the resources that can accomplish it through the
Allocator.

12

In the BDI architecture, beliefs are generated from reasoning over the world model. Beliefs
represent the set of acceptable plans that an agent believes will allow it to achieve its intentions.
From that set, one plan is selected as the best according to some criteria - and that becomes the
decision. For planning within an ALP agent, that process is localized to an Expander which is free
to employ any mechanism it desires to develop a single plan which will be posted as part of the
Log-Plan. If the planning process involves more than one agent, then an approach very similar to
the Beliefs process of BDI is used. In the ALP system, the task objective is passed to the
subordinate agent, which then responds with a set of penalty functions representing the solution
space, usually consisting of multiple ways to meet the objective. Note, unlike BDI, what is
exchanged is the penalty function relating the relative costs along the preference and criteria
vectors for various solutions. No plan solution or state information is shared between the parent
and child. Based on the penalty function information only, the parent selects a desired point on the
graph and thereby decides upon a given plan.

4. Future Plans

In the remaining two years of the Advanced Logistics Project, the architecture will be expanded to
support the development of multiple concurrent plans and the creation of multiple worlds. These
extensions will allow an agent or set of agents to develop contingency plans, evaluate alternate
courses of action, address uncertainty in operational outcomes, and change the fundamental
operating assumptions upon which the logistics plans are constructed. With this capability, the
system will be better equipped to perform fhat-if” analysis of various forms and maintain
concurrent plan alternatives.

5. Conclusions

In this paper, we have briefly described the overall architecture of the DARPA Advanced Logistics
Project. The main goal of ALP is to develop and demonstrate the architecture, theory, and
algorithms needed for the next generation global logistics systems. In the DOD domain, this
involves the ability to completely automate the creation of a logistics plan and reduce plan
development time from the current 45-60 days to less than an hour.

The accomplishment of this goal requires the ability to solve a variety of hard computational
problems, ranging from the access of multiple, distributed, heterogeneous databases, to the
development of scalable plan sentinels and agent infrastructures that can support hundreds of
thousands of interacting agents. This paper has presented the ALP architecture attempted to show
how it supports the goals of the program, and how it compares to several other agent architecture
approaches.

REFERENCES

[AO99] K. Arnold, B. O'Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath. The Jini Specification,
Addison-Wesley, 1999.

13

[BR86] R.A. Brooks. A Robust Layered Control System For A Mobile Robot, IEEE Journal of
Robotics and Automaton, 2(1):14-23, 1986.

[DRS98] A. Dekhtyar, R. Ross and V.S. Subrahmanian. Probabilistic Temporal Databases:
Algebra and Implementation, Univ. of Maryland Technical Report CS-TR-3987, Jan.1999.

[DDO98] A. Dogac, C. Dengi and M.T. Ozsu, Building Interoperable Databases on Distributed
Object Management Platforms, Communication of the ACM, 41(9): 95-103, September 1998.

[DS98] C. E. Dyreson and R. T. Snodgrass. Supporting Valid-time Indeterminacy, ACM
Transactions on Database Systems, March 1998.

[DS99] T. Daly, U. Shetty. Enterprise JavaBeans Tutorial: Building Your First Stateless Session
Bean, Java Tutorials, Sun, 1999.

[ESP98] T. Eiter, V.S. Subrahmanian and G. Pick. Heterogeneous Active Agents, I: Semantics,
Artificial Intelligence Journal, Vol. 108, Nr. 1, pps 179-255.

[FN71] R.E. Fikes, N.J. Nilsson, STRIPS: a New Approach to the Application of Theorem Proving
to Problem Solving, Artificial Intelligence, 2, pp. 189-208.

[GK94] M.R. Genesereth and S.P. Ketchpel. Software Agents. Communications of the ACM, 37(7),
1994,

[KGI1] D. Kinny and M. Georgeff. Commitment and Effectiveness of Situated Agents,
Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91),
pages 82-88, 1991.

[L86] H. Lieberman. Using Prototypical Objects to Implement Shared Behavior in Object Oriented
Systems. OOPSLA 386 Proceedings. ACM Press, September 1986.

[NI80] N.J. Nilsson. Principles of Artificial Intelligence, Morgan Kaufmann, 1980.

[RGI2] A.S. Rao and M.P. Georgeff. An Abstract Architecture for Rational Agents, Proceedings of
Knowledge Representation and Reasoning (KR&R-92), pages 439-449, 1992.

[SRM98] J.H. Schafer, T.J. Rogers and J. Marin. (1998) Networked Visualization of US Army War
Reserve Readiness Data, in Proc. 1998 Intl. Workshop on Multimedia Information Systems (eds. S.
Jajodia, M.T. Ozsu and A. Dogac), Springer Lecture Notes in Computer Science Vol., 1508, pps
136-147.

[SU99] V.S. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan and R. Ross.
Heterogenous Agent Systems: Theory and Implementation, MIT Press, Jan. 2000, to appear.

[TA77] A. Tate. Generating Project Networks, IJCAI-77, Boston, MA.

[VO98] G. Voss. Introducing Java Beans, Sun, 1998.

14

[WI93] G. Wiederhold. Intelligent Integration of Information, In: Proc. 1993 ACM SIGMOD Conf. on
Management of Data, pp 434--437, 1993.

[WE99] G. Weiss. Multi-Agent Systems: A Modern Approach To Distributed Avtificial Intelligence,
MIT Press, 1999.

15

